SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

MATHEMATICS

Course Title:

MTH 554-4

Code No.:

MECHANCIAL TECHNOLOGY

Program:

III

Semester:

JULY, 1987

Date:

W. MACQUARRIE

Author:

New

Revision

APPROVED

Chairman Sept.

//// jr^//"

CALENDAR DESCRIPTION

MATHEMATICS MTH 554-4

COURSE NAME COURSE NUMBER

PHILOSOPHY/GOALS:

In this course, the student is introduced to the subject of Calculus and will cover functions, limits, derivatives, how to find and use derivative in a variety of engineering problems (maxima/minima, related rates, etc.) and also, an introduction to indefinite and definite integrals, how to wo with them and use them to solve a variety of engineering problems (ares under/between, curves, volumes of solids of revolution, and motion problems).

METHOD OF ASSESSMENT (GRADING METHOD);

- 1. Three to four tests per semester-
- 2. Several short (possibly unannounced) quizzes per semester.
- 3. Final grade is a weighted average of the above.
- 4- See also the Mathematics Department's annual publication. To the Mathematics Student for further details, numerical percent equivalents for letter grades, etc.
- 5. Depending on individual circumstances, a failing grade at the end of a semester may be upgraded by writing a two-hour comprehensive examination.

TEXTBOOK(S):

Cummings, Benjamin, BASIC TECHNICAL MATHEMATICS WITH CALCULUS, J.J. Washington,

MTH544-4...MECHANICAL,..3

TOPIC NUMBER	PERIODS	TOPIC DESCRIPTION	
	^	Introduction to Differential Calculus Functional notation Limiting value of a function Differentiation-delta method Practical applications- rectiline motion	
	12	Differentiation by Rule Differentiation formulas Composite function and the chain rule Implicit differentiation Electrical applications Successive differentiation	
	10	Practical Application of Differentiation Gradients Tangents to curves Maxima and minima Related rate problems	
	*	Diffejg'ential and Integral	
		Differential formulas Applications of differential Integration as anti-differentiation Applications of indefinite integration	731- • 736- 763-
	9	Definite Integration Areas under a curve Fundamental theorem of integral calculus Computations with definite integrals Application to areas, volume, motion electrical problems	744- 770- 775-